108 research outputs found

    Collaborative conservation planning : Quantifying the contribution of expert engagement to identify spatial conservation priorities

    Get PDF
    The importance of expert input to spatial conservation prioritization outcomes is poorly understood. We quantified the impacts of refinements made during consultation with experts on spatial conservation prioritization of Christmas Island. There was just 0.57 correlation between the spatial conservation priorities before and after consultation, bottom ranked areas being most sensitive to changes. The inclusion of a landscape condition layer was the most significant individual influence. Changes (addition, removal, modification) to biodiversity layers resulted in a combined 0.2 reduction in correlation between initial and final solutions. Representation of rare species in top ranked areas was much greater after expert consultation; representation of widely distributed species changed relatively little. Our results show how different inputs have notably different impacts on the final plan. Understanding these differences helps plan time and resources for expert consultation.Peer reviewe

    Valid auto-models for spatially autocorrelated occupancy and abundance data

    Full text link
    Auto-logistic and related auto-models, implemented approximately as autocovariate regression, provide simple and direct modelling of spatial dependence. The autologistic model has been widely applied in ecology since Augustin, Mugglestone and Buckland (J. Appl. Ecol., 1996, 33, 339) analysed red deer census data using a hybrid estimation approach, combining maximum pseudo-likelihood estimation with Gibbs sampling of missing data. However Dormann (Ecol. Model., 2007, 207, 234) questioned the validity of auto-logistic regression, giving examples of apparent underestimation of covariate parameters in analysis of simulated "snouter" data. Dormann et al. (Ecography, 2007, 30, 609) extended this analysis to auto-Poisson and auto-normal models, reporting similar anomalies. All the above studies employ neighbourhood weighting schemes inconsistent with conditions (Besag, J. R. Stat. Soc., Ser. B, 1974, 36, 192) required for auto-model validity; furthermore the auto-Poisson analysis fails to exclude cooperative interactions. We show that all "snouter" anomalies are resolved by correct auto-model implementation. Re-analysis of the red deer data shows that invalid neighbourhood weightings generate only small estimation errors for the full dataset, but larger errors occur on geographic subsamples. A substantial fraction of papers applying auto-logistic regression to ecological data use these invalid weightings, which are default options in the widely used "spdep" spatial dependence package for R. Auto-logistic analyses using invalid neighbourhood weightings will be erroneous to an extent that can vary widely. These analyses can easily be corrected by using valid neighbourhood weightings available in "spdep". The hybrid estimation approach for missing data is readily adapted for valid neighbourhood weighting schemes and is implemented here in R for application to sparse presence-absence data.Comment: Typos corrected in Table 1. Note that defaults in R package 'spdep' have changed in response to this paper; some results using defaults are therefore now version-dependen

    Clean and Green Urban Water Bodies Benefit Nocturnal Flying Insects and Their Predators, Insectivorous Bats

    Get PDF
    Nocturnal arthropods form the prey base for many predators and are an integral part of complex food webs. However, there is limited understanding of the mechanisms influencing invertebrates at urban water bodies and the potential flow-on effects to their predators. This study aims to: (i) understand the importance of standing water bodies for nocturnal flying insect orders, including the landscape- and local-scale factors driving these patterns; and (ii) quantify the relationship between insects and insectivorous bats. We investigated nocturnal flying insects and insectivorous bats simultaneously at water bodies (n = 58) and non-water body sites (n = 35) using light traps and acoustic recorders in Melbourne, Australia. At the landscape scale, we found that the presence of water and high levels of surrounding greenness were important predictors for some insect orders. At the water body scale, low levels of sediment pollutants, increased riparian tree cover and water body size supported higher insect order richness and a greater abundance of Coleopterans and Trichopterans, respectively. Most bat species had a positive response to a high abundance of Lepidopterans, confirming the importance of this order in the diet of insectivorous bats. Fostering communities of nocturnal insects in urban environments can provide opportunities for enhancing the prey base of urban nocturnal insectivores.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Optical Absorption by Indirect Excitons in a Transition Metal Dichalcogenide Double Layer

    Full text link
    We calculate the binding energy, transition energies, oscillator strength, and absorption coefficient of indirect excitons in transition metal dichalcogenide (TMDC) double layers separated by an integer number of hexagonal boron nitride (h-BN) monolayers. The absorption factor, a dimensionless quantity which gives the fraction of incoming photons absorbed by the indirect excitons in the double layer, is evaluated. The aforementioned optical quantities are obtained for transitions from the ground state to the first two excited states. All quantities are studied as a function of the interlayer separation, which may be experimentally controlled by varying the number of h-BN monolayers between the TMDC layers. Calculations are performed by using the exciton wave function and eigenenergies obtained for the Keldysh potential. For each material, we choose a combination of the exciton reduced mass and the dielectric screening length from the existing literature which give the largest and the smallest indirect exciton binding energy. These combinations of material parameters provide upper and lower bounds on all quantities presented. Our findings can be examined experimentally via two-photon spectroscopy.Comment: 13 pages, 3 figure

    Modelling the spatial variation of vital rates: An evaluation of the strengths and weaknesses of correlative species distribution models

    Get PDF
    P. 841-853Aim: Species distribution models based on breeding occurrence data allow for identifying both environmental drivers and geographic areas potentially relevant for breeding. However, the interpretation of model predictions in terms of reproductive performance should be further investigated, as this information is crucial for conservation planning. We evaluated the strengths and weaknesses of a correlative modelling approach based on breeding occurrence data (presence–absence) against another approach based on vital rates’ data (breeding success) for gaining insights on species persistence in the case of Great Bustards (Otis tarda). Location: Spain. Methods: Breeding occurrence and breeding success were independently modelled using generalized linear models and multimodel inference analyses. Sensitivities to the way in which the population parameter (breeding success) was defined were explored by building five versions of the dependent variable. We evaluated differences in model performance and identified areas of congruence for breeding occurrence and breeding success. Results: The agreement between the spatial predictions achieved by breeding occurrence and breeding success models differed substantially across databases, with the largest differences in occupied breeding areas. The deviance explained by the breeding occurrence model was 64.98% and ranged from 7.83% to 62.27% for the breeding success models. Model performance was higher for models calibrated within potential than within occupied breeding areas. Main conclusions: The combination of data on both breeding occurrence and breeding success into a species distribution modelling framework showed the limitations of breeding occurrence models for inferring reproductive parameters. The definition of the population parameter as dependent variable was a key factor that strongly affected the inference of vital rates’ models. The approach allowed for discriminating between areas and landscape attributes necessary for the long-term species persistence from others that may be relevant, but not so much for reproductive performance

    Quantifying the impact of vegetation-based metrics on species persistence when choosing offsets for habitat destruction

    Get PDF
    Developers are often required by law to offset environmental impacts through targeted conservation actions. Most offset policies specify metrics for calculating offset requirements, usually by assessing vegetation condition. Despite widespread use, there is little evidence to support the effectiveness of vegetation-based metrics for ensuring biodiversity persistence. We compared long-term impacts of biodiversity offsetting based on area only; vegetation condition only; area x habitat suitability; and condition x habitat suitability in development and restoration simulations for the Hunter Region of New South Wales, Australia. We simulated development and subsequent offsetting through restoration within a virtual landscape, linking simulations to population viability models for 3 species. Habitat gains did not ensure species persistence. No net loss was achieved when performance of offsetting was assessed in terms of amount of habitat restored, but not when outcomes were assessed in terms of persistence. Maintenance of persistence occurred more often when impacts were avoided, giving further support to better enforce the avoidance stage of the mitigation hierarchy. When development affected areas of high habitat quality for species, persistence could not be guaranteed. Therefore, species must be more explicitly accounted for in offsets, rather than just vegetation or habitat alone. Declines due to a failure to account directly for species population dynamics and connectivity overshadowed the benefits delivered by producing large areas of high-quality habitat. Our modeling framework showed that the benefits delivered by offsets are species specific and that simple vegetation-based metrics can give misguided impressions on how well biodiversity offsets achieve no net loss.Peer reviewe

    Monitoring, imperfect detection, and risk optimization of a Tasmanian devil insurance population

    Get PDF
    Most species are imperfectly detected during biological surveys, which creates uncertainty around their abundance or presence at a given location. Decision makers managing threatened or pest species are regularly faced with this uncertainty. Wildlife diseases can drive species to extinction; thus, managing species with disease is an important part of conservation. Devil facial tumor disease (DFTD) is one such disease that led to the listing of the Tasmanian devil (Sarcophilus harrisii) as endangered. Managers aim to maintain devils in the wild by establishing disease-free insurance populations at isolated sites. Often a resident DFTD-affected population must first be removed. In a successful collaboration between decision scientists and wildlife managers, we used an accessible population model to inform monitoring decisions and facilitate the establishment of an insurance population of devils on Forestier Peninsula. We used a Bayesian catch-effort model to estimate population size of a diseased population from removal and camera trap data. We also analyzed the costs and benefits of declaring the area disease-free prior to reintroduction and establishment of a healthy insurance population. After the monitoring session in May-June 2015, the probability that all devils had been successfully removed was close to 1, even when we accounted for a possible introduction of a devil to the site. Given this high probability and the baseline cost of declaring population absence prematurely, we found it was not cost-effective to carry out any additional monitoring before introducing the insurance population. Considering these results within the broader context of Tasmanian devil management, managers ultimately decided to implement an additional monitoring session before the introduction. This was a conservative decision that accounted for uncertainty in model estimates and for the broader nonmonetary costs of mistakenly declaring the area disease-free
    corecore